
more efficient than Method 1 by a factor of 2 , or 8,589,934,592. 
Method 3 is even better.

Let X and Y be the two surfaces whose boundaries intersect at a 
crossing. The crossing can only be in one of two states. Either X is 
above Y or Y is above X.

The Crossing-State Equivalence Class Rule states:

All crossings in a crossing-state
equivalence class must be in the same state.

The rule is proven in [3].

Consider the superregion { m, n } shared  by surfaces 2 and 3. The 
only  segment interior to  the shared superregion is part of the 
boundary of surface 1. Therefore, surfaces 2  and 3  cannot change 
relative depth along that boundary segment. Thus, all  corners  of { m, 
n } (marked with green circles) must be in the same state.

In the following definitions, examples refer to Fig. 4.

• 2½ D scene - a scene of surfaces (surfaces  shown numbered) which
     may overlap or interweave, e.g., Figs. 1, 2, 4, 5, and 6.
• Boundary segment  - a section of a boundary joining two crossings.
• Region - a partitioning of the canvas along boundary segments
     (regions shown lettered). Every region is covered by zero or
     more surfaces, e.g., region k is covered by surfaces 1 and 3.

A legal labeling  is one in which every 
crossing honors the labeling scheme (Fig. 3), 
which specifies constraints on  the relative 
depths at a crossing.

The corners of a shared superregion comprise the crossing-state 
equivalence class for that shared superregion. Notice that  every 
crossing in a drawing is a corner of some shared superregion. 
Consequently, every crossing is a member of some crossing-state 
equivalence class. Crossing-state equivalence classes  are marked 
with  unique shapes/colors at the crossings in Fig 4.

The labeling space consists 
of all crossing-state 
labelings crossed with all 
segment depth labelings. 
Table 1 only shows the 
crossing-state search space 
sizes for Fig. 5. Method 2 is

In our earlier work, we developed Druid, a system for constructing 
interwoven 2½ D scenes. Past versions of Druid relied on a tree 
search to find a new labeling following many user-interactions. Even 
with  substantial optimization techniques, this search hindered 
Druid’s scalability.

We have discovered a topological trait of 2½ D scenes which we call 
the crossing-state equivalence class rule. Exploitation of this trait  can 
alleviate the need to search in some situations, and can dramatically 
reduce the search space in remaining situations that require a search. 
Thus, we have vastly extended the complexity of drawings that  users 
of Druid  can construct.

[1] Lance R. Williams. Perceptual Completion of Occluded Surfaces. Ph.D. dissertation. Univ. of 
Massachusetts at Amherst, 1994.

[2] Keith Wiley and Lance R. Williams. Representation of interwoven surfaces in 2½ D drawing. In 
CHI Proceedings, 2006.

[3] Keith Wiley and Lance R. Williams. Use of Crossing-State Equivalence Classes for Rapid 
Relabeling of Knot-Diagrams Representing 2½ D Scenes. CSUSC, 2006.
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Occasionally, Druid must find a new legal labeling, e.g., after a 
surface-flip user-interaction, in which the user inverts the relative 
depth ordering of two surfaces  within an area of overlap (Fig. 5). It is 
desirable that the new labeling  be a minimum difference labeling 
with  respect to the labeling preceding the flip.

There are three methods for relabeling a figure:

     1. Perform a tree search (our original method).
     2. Perform the same search using equivalence classes as a search
          constraint.
     3. Maintain the equivalence classes without a search and deduce
          the resulting segment depth changes directly.

Although we have developed a number of search optimization 
techniques, Druid’s capability using Method 1 remained limited due 
to  long search times for complex drawings.

Table 2  shows relabeling running times 
for the flip shown in Fig. 5  on  a 
1.6GHz G5 PowerMac. We observe 
that Method 2 is  adequate for most 
drawings. Method 3 can extend Druid’s 
capability even further however.

Method Time (secs)

1 45.19s

2 .15s

3 <.01s

Fig. 6 shows a scene with 256 
crossings and 64 equivalence classes.

Druid can find the equivalence 
classes and label this figure from 
scratch in 6.04 seconds. Method 1 
fails to find any legal labeling in  a 
reasonable time (the search was 
terminated after a few minutes).

Subsequent surface-flips are 
instantaneous.

Druid represents 2½ D scenes with a 
labeled knot-diagram (Fig. 2) [1], which 
assigns  a sign of occlusion to every 
boundary (shown hashed), to state 
which side of the boundary  the surface 
lies on, and a depth index to every 
boundary segment.. This  representation 
permits interwoven scenes.

• Superregion - a set  of contiguous regions covered by a single
     surface, e.g., { b, g, h, n  } for surface 2.
• Shared superregion - the maximum superregion common to two
     surfaces, e.g., { g, m } for surfaces 1 and 2.
• Corner of a shared superregion - a crossing where adjacent
     segments of a shared superregion’s border belong to different
     surfaces, e.g., corners for shared superregion { m, n } of
     surfaces 2 and 3 are marked with green circles.
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The surface relationships  in 
this scene do not form a DAG .

In our earlier work, we developed 
Druid [2], a drawing program which 
permits construction of 2½ D 
scenes. A 2½ D scene is 
fundamentally 2D, but represents 
relative depths of surfaces. 
Conventional drawing programs use 
a layered representation which limits 
them to DAG-based scenes (Fig 1).

Method Crossing-state search space size

1 2    (for 40 crossings)

2 2  (for 7 equivalence classes)

3 N/A, i.e., 0 (there is no search)

40

7

Figure 1. A surface DAG typical of a conventional 
layer-based drawing program.

Figure 2. A labeled knot-diagram representation 
permits scenes of interwoven surfaces.

Figure 3. The labeling scheme 
constrains relative depths at a crossing.

Figure 4. This figure shows a scene 
of interwoven surfaces with a 
number of features labeled.

Figure 5. This figure 
shows a drawing before 
and after a shared 
superregion is flipped.

Figure 6. A fairly complex scene that our original 
system could not handle in reasonable running 
times. The new system performs very well, with 
response times on the order of a few seconds..

Table 1. Crossing-state search space sizes for 
the three relabeling methods applied to Fig. 5.

Table 2. Relabeling running times for 
the three methods applied to Fig. 5.
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