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Use of Crossing-State Equivalence Classes for Rapid
Relabeling of Knot-Diagrams Representing 21/2D Scenes

Keith Wiley and Lance R. Williams
Department of Computer Science, University of New Mexico, Albuquerque, NM 87131

In our previous research, we have demonstrated a sophisticated computer-assisted drawing program called
Druid, which permits easy construction of21/2D scenes. A 21/2D scene is a representation of surfaces that
is fundamentally two-dimensional, but which also represents the relative depths of those surfaces in the third
dimension. This paper improvesDruid’s efficiency by exploitating a topological trait of 21/2D scenes called a
crossing-state equivalence class. This paper describes this trait and how it is used byDruid.

I. INTRODUCTION

Our research focuses on the development of an advanced
drawing program calledDruid [1], which permits the con-
struction of 21/2D scenes. A 21/2D scene is a representa-
tion of surfaces that is fundamentally two-dimensional, but
which also represents the relative depths of those surfaces in
the third dimension. To accomplish this,Druid useslabeled
knot-diagramsto represent surfaces [2].

This paper describes a topological constraint on legal la-
belings which we call thecrossing-state equivalence class
rule. Use of this constraint allows us to rapidly relabel a knot-
diagram representing a 21/2D scene.

II. DEFINITION OF KEY CONCEPTS
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FIG. 1: An interwoven 21/2D scene. Regions are labeled with letters,
surfaces with numbers, and crossing-state equivalence classes with
shapes.

Fig. 1 shows a 21/2D scene of interwoven surfaces. A sec-
tion of a boundary joining two crossings is termed aboundary
segment. We observe that the canvas is partitioned into dis-
joint regionsseparated by boundary segments. In Fig. 1, the
regions of the canvas are labeled with letters. We observe that
every region is covered by zero or more surfaces (numbered
in Fig. 1). For example, regionk is covered by surfaces1 and
3 while regionm is covered by surfaces1, 2, and3.

To define and prove the crossing-state equivalence class
rule, we first define the following terms:

• A superregionis a set of contiguous regions covered by
a single surface. For example, in Fig. 1, {b, g, h, n } is
a superregion of surface2.

• A border of a superregion is the set of boundary seg-
ments which define its perimeter.

• A shared superregionis the maximum superregion
common to two surfaces,e.g., { g, m } is a shared su-
perregion of surfaces1 and2.

• A corner of a shared superregion is a crossing where
adjacent boundary segments of the border belong to dif-
ferent surfaces. In Fig. 1, corners corresponding to the
shared superregion {m, n } common to surfaces2 and
3 are marked with circles.

The corners of a shared superregion comprise thecrossing-
state equivalence classfor that shared superregion. Notice
that every crossing in a drawing is a corner of some shared su-
perregion. Consequently, every crossing is a member of some
crossing-state equivalence class.

III. REDUCING GENERAL 2 1/2D SCENES TO SIMPLE
21/2D SCENES

A simple surfaceis a surface with a single boundary com-
ponent which does not intersect itself,i.e., a Jordon curve.
Two steps are required to reduce a general 21/2D scene to a
simple 21/2D scene. First, any surface with multiple boundary
components (a surface containing holes) must be converted
into a surface with a single boundary component. Second,
any self-overlapping surfaces must be converted into a set of
non-self-overlapping surfaces.

We perform both surface conversions usingcuts [1]. A
cut is analogous to a scissor cut through a surface from one
boundary to another. When two boundaries are connected by
a cut, they are joined into a single boundary component (Fig.
2). Likewise, a self-overlapping surface with a single bound-
ary component can be cut into multiple smaller surfaces which
abut and such that no surface in the final scene self-overlaps
(Fig. 3).
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FIG. 2: A cut connects two boundaries of a single surface into a
single boundary for that surface.
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FIG. 3: A cut connects two locations on the same boundary to break
the boundary into two boundaries and the surface into two surfaces.

IV. THE CROSSING-STATE EQUIVALENCE CLASS RULE

Let X andY be the two surfaces whose boundaries intersect
at a crossing. We observe that the crossing can only be in one
of two states. Either surfaceX is above surfaceY or surfaceY
is above surfaceX.

Theorem All crossings in a crossing-state equivalence
class must be in the same state.

Proof We first prove the above theorem for simple surfaces.
Because any general 21/2D scene can be reduced to a simple
21/2D scene, this suffices to prove the theorem in the general
case. We begin by observing the following:

• We observe that for every region there is a total depth
ordering of the surfaces which cover that region.

• The total depth ordering of adjacent regions is identical
except for the addition or deletion (depending on the
sign of occlusion) of the surface whose boundary seg-
ment separates the two regions.

• It follows that the relative depth of two surfaces in adja-
cent regions remains the same if the boundary segment
which divides the regions belongs to neither surface.

• It follows that the relative depth of two surfaces is con-
stant within a shared superregion.

• The relative depth of the two surfaces whose boundaries
intersect at a crossing is the same as the relative depth
of those surfaces in the region they corner.

Consequently, the relative depth ordering of two surfaces at
every crossing in a crossing-state equivalence class must be
the same.�

For example, in Fig. 1, consider the superregion {m, n }
shared by surfaces2 and3. The only segment interior to the
superregion is part of the boundary of surface1. Therefore,
the relative depths of surfaces2 and3 cannot change along
that boundary segment.

V. RESULTS

Fig. 4 shows a drawing of low complexity before (left) and
after (right) two surfaces are flipped with respect to one an-
other. There are three methods by whichDruid can relabel a
drawing, as follows:

1. Perform a tree search to find a new labeling.
2. Perform the same search but use the equivalence classes

as a constraint during the search process.
3. Update the equivalence classes without a search and de-

duce the segment depth changes directly.

Method 1 is our original method. Method 2 provides signif-
icant improvements and is only inadequate for drawings of
high complexity. Method 3 is even better however. Table I
shows the relabeling running times for the three methods on a
1.6GHz G5 PowerMac.

Method time (secs)

1 45.19s

2 .15s

3 <.01s

TABLE I: Running times for three possible relabeling methods fol-
lowing the flip shown in Fig. 4.

Notice that Method 2 provides adequate improvement. In fact,
it is within our tolerances for reasonable turnaround times. In
other words, Method 2 provides sufficient performance in this
example and Method 3 is unnecessary. It would be difficult
to show an example that demonstrates the benefits of Method
3 over Method 2 because such an example would have to be
extremely complex.

FIG. 4: This figure shows a drawing before (left) and after (right) a
shared superregion has been flipped. Exploiting crossing-state equiv-
alence classes to relabel the drawing following the flip is quite ben-
eficial. Using Method 3 to relabel the drawing,Druid can directly
deduce the correct labeling without performing a search, and thus
the relabeling time is extremely fast. Method 1, our original relabel-
ing method, would have to search a large space of possible labelings
to find the correct labeling. Method 2, which performs a search, but
uses the equivalence classes as a constraint on the search, also per-
forms very well, as shown in table I.

VI. CONCLUSION

In earlier work, we developed a system calledDruid which
permits the construction of interwoven 21/2D scenes. The
newDruid system exploits a topological constraint on 21/2D
scenes which we call the crossing-state equivalence class
rule, and consequently can relabel knot-diagrams much more
rapidly than the old system. This vastly extends the complex-
ity of drawings that users ofDruid can construct.
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