
Drawing Interwoven Surfaces

Keith Wiley and Lance Williams

We have created a system calledDruid which uses a novel approach to representing interwoven surfaces in
a 21

2
D scene. Our system does not rely on a layered representation, and therefore does not suffer from the

limitations imposed by layering.Druid maintains depth information only as a local property of segments of
surface boundaries without requiring global depth information for each surface. The effect is that it is very easy
to create drawings of interwoven surfaces withDruid while this is very difficult to achieve with other drawing
programs at the present time.

I. INTRODUCTION

Classic drawing programs generally rely on technology dat-
ing back to the early 1980s. Many features in contemporary
drawing programs have their origin in Sutherland’s seminal
PhD thesis on computer-assisted drawing (Sutherland [1]).
Consequently, most drawing programs use a directed acyclic
graph to represent surface depths in a 21

2D scene. We be-
lieve this unnecessarily restricts the space of possible draw-
ings. Specifically, it precludes drawings of surfaces which
interweave. An example of a drawing that is difficult to create
with such systems is a pair of interlocking rings. More com-
plex patterns include Celtic knots. Our system,Druid, allows
a user to create and edit such drawings quickly and easily.

II. 2 1
2
D DRAWING

Drawing programs allow a user to create and edit a set of
objects that are represented either by basic shapes (ellipses
and polygons) or by complex curves (splines). Unlike paint-
ing programs which store information as a bitmap, drawing
programs store objects as abstract representations which can
be translated into images depicting the objects, i.e., the repre-
sentations can belrenderedinto final images. Consequently,
objects in drawing programs can easily be edited after they
have been created.

Most drawing programs at the present time represent the
depths of objects in a series of layers, one layer per object.
The ordering of the layers comprises a directed acyclic graph
on the object depths. Consequently, no two objects can both
occlude different regions of each other at the same time.

Layering is a fairly simple system to implement, which ex-
plains its ubiquity. However, complicated brittle spoofs are
required to achieve rendered images that depict interwoven
surfaces. A spoof is a visual illusion that creates the appear-
ance of interweaving where, in actuality, the underlying rep-
resentation has no such concept.

III. THE LABELING SCHEME

Williams [2] devised the labeling scheme used inDruid.
Druid represents two-dimensional surfaces by their closed
one-dimensional boundaries. The interiors of surfaces are not
relevant toDruid’s function until the final rendering stage.
Druid treats the one-dimensional boundaries as alabeled

knot-diagram. In a labeled knot-diagram, boundaries have a
In a sign of occlusioncorresponding to a direction of travel
along the boundary such that the bounded surface lies to the
right of the boundary. Additionally, boundary segments are
assigned a nonnegativedepth index. Druid imposes a set of
depth constraints on the ways in which two one-dimensional
boundaries can cross each other. Fig. 1 shows these con-
straints. For a drawing to be considered legal all of its inter-
sections must honor the labeling scheme.

In Fig. 1 and Fig. 2 the arrow along a boundary denotes its
sign of occlusion. In Fig. 1 there is no arrow shown for the
lower boundary because it does not affect the labeling of that
intersection.
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FIG. 1: The labeling scheme: The opposing top segments must have
the same depth while the opposing bottom segments must differ in
depth by exactly one. Additionally, the unoccluded segment of the
bottom segment must be no shallower than the top segments.

As a user creates and edits boundaries for various surfaces
in a scene, boundary intersections will be created and de-
stroyed.Druid detects these changes on the fly and imposes
the labeling scheme on all intersections in the drawing such
that the drawing remains legal at all times.

IV. BOUNDARY GROUPING

It is helpful to group boundaries that are components of a
single surface. This prevents the ambiguity that would other-
wise result as to whether a hole lies beneath, above, or part
of the same surface as a surrounding solid boundary. We find
groups by searching for cuts between pairs of boundaries. A
cut is analogous to a scissor-cut through a surface. The dis-
covery of a legal cut between two boundaries effectively joins
the two boundaries into a single boundary (Fig. 2). Repre-
sented as a single boundary resulting from a cut, the two orig-
inal boundaries will then constrain the drawing to labelings in
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which they bound the same surface.
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FIG. 2: A cut converts two boundaries into one boundary

V. FINDING A LEGAL LABELING

Given an unlabeled knot-diagram, there is a space consist-
ing of all combinations of possible crossing-states, signs of
occlusion, and depth indices. Whenever a change occurs to
the topology of the knot-diagramDruid must find a new legal
labeling as quickly as possible. Furthermore, it is preferable
that Druid find a new legal labeling that preserves as much
state as possible from the prior labeling that existed before the
change occurred. We call this theminimum difference solu-
tion. This is desirable because the user generally wants com-
ponents of the drawing that are not invalidated by the change
to remain unaltered until the user explicitly designates such a
change.

Druid’s ability to automatically find a new legal solution
after a user-interaction alleviates much of the burden on the
user. For example, when a user wishes to flip the depth order-
ing of two overlapping surface regions, the user simply clicks
with the mouse on any single intersection associated with the
overlapping region in question. It is possible that many other
intersections will have to be flipped as well in order to cre-
ate a legal labeling that corresponds to the desired change, but
Druid discovers the necessary changes on its own.

Druid’s primary challenge is to find the minimum differ-
ence labeling in an acceptable time period. For a decent user-
experience we would like to achieve turn-around times under
a second if possible. This can be difficult because the search
spaces for moderately sized drawings can be extremely large.

VI. INTERSECTION PROJECTION

A topology change occurs whenever intersections are cre-
ated, destroyed, or change their relative positions on a bound-
ary. Topology changes can occur due to a user interaction
such as a move, reshape, or deletion of a boundary compo-
nent. Druid needs to find the minimum difference labeling
when such a change occurs. Therefore it is crucial to preserve
the crossing-states of all existing intersections as the drawing
changes. This precludes the simple solution of recomputing
intersections every time a topological change occurs.

The better solution, the one adopted here, is to project an
intersection from its old position to its new position as a func-
tion of the interaction between two boundaries that are being

deformed. Druid represents boundaries as piecewise linear
approximations of B-spline curves. The projection of an in-
tersection is accomplished by determining the traversal of an
intersection from one straight line segment to another around a
given boundary. The final location of the intersection is deter-
mined by finding the pair of straight line boundary segments
that intersect after the change has occurred.

VII. FINAL RENDERING OF A DRAWING

To produce an opaque rendering of a drawingDruid must
determine which surface is at depth zero for each region of
the knot-diagram. The region can then be defined as a poly-
gon with vertices at the intersections that bound the region.
The depth zero surface’s color can be used to fill the region.
To produce a transparent rendering, the process is simply ex-
tended to find all the surfaces which cover a region and their
depth ordering for the region. A transparent color model can
then be applied to calculate a single final color for the region.
Fig. 3 show some examples of whatDruid enables a user to
create.

FIG. 3: Some final renderings created withDruid

VIII. CONCLUSIONS

We have devised a completely new approach for drawing
programs. We do not store global depths for surfaces in
a scene, but rather assign local depths to segments of one-
dimensional boundaries for each two-dimensional surface and
maintain a set of constraints on the ways in which these depths
relate to each other at the intersections in the drawing. We
have also created an intuitive interface for interacting with
such a system that makes creating and editing interweaving
drawings fast, easy, and fun.
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