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ABSTRACT. In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images
and detect hundreds of millions of sources every night. The study of these sources will involve computation chal-
lenges such as anomaly detection and classification and moving-object tracking. Since such studies benefit from the
highest-quality data, methods such as image co-addition, i.e., astrometric registration followed by per-pixel sum-
mation, will be a critical preprocessing step prior to scientific investigation. With a requirement that these images be
analyzed on a nightly basis to identify moving sources such as potentially hazardous asteroids or transient objects
such as supernovae, these data streams present many computational challenges. Given the quantity of data involved,
the computational load of these problems can only be addressed by distributing the workload over a large number of
nodes. However, the high data throughput demanded by these applications may present scalability challenges for
certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce,
and in this article we focus on its popular open-source implementation called Hadoop. In the Hadoop framework,
the data are partitioned among storage attached directly to worker nodes, and the processing workload is scheduled
in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us
to exploit cloud-computing resources: i.e., platforms where Hadoop is offered as a service. We report on our ex-
perience of implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This
multiterabyte imaging data set provides a good testbed for algorithm development, since its scope and structure
approximate future surveys. First, we describe MapReduce and how we adapted image co-addition to the Map-
Reduce framework. Then we describe a number of optimizations to our basic approach and report experimental
results comparing their performance.

1. INTRODUCTION

Many topics within astronomy require data gathered at the
limits of detection of current telescopes. One such limit is that
of the lowest detectable photon flux given the noise floor of
the optics and camera. This limit determines the level below
which faint objects (e.g., galaxies, nebulae, and stars), cannot
be detected via single exposures. Consequently, increasing the
signal-to-noise ratio (S/N) of such image data is a critical
data-processing step. Combining multiple brief images, i.e.,
co-addition, can alleviate this problemby increasing the dynamic
range and getting better control over the point-spread function
(PSF). Co-addition has successfully been used to increase S/N
for the study ofmany topics in astronomy, including gravitational
lensing, the nature of dark matter, and the formation of the large
structure of the universe. For example, it was used to produce the
Hubble Deep Field (Szalay 1999).

While image co-addition is a fairly straightforward process,
it can be costly when performed on a large data set, as is often
the case with astronomical data (e.g., tens of terabytes for recent

surveys and tens of petabytes for future surveys). Seemingly
simple routines such as co-addition can therefore be a time-
and data-intensive procedure. Consequently, distributing the
workload in parallel is often necessary to reduce the time to so-
lution. We wanted a parallelization strategy that minimized de-
velopment time, was highly scalable, and was able to leverage
increasingly prevalant service-based resource-delivery models,
often referred to as cloud computing. The MapReduce frame-
work (Google 2004) offers a simplified programming model
for data-intensive tasks and has been shown to achieve extreme
scalability. We focus on Yahoo’s popular open-source Map-
Reduce implementation called Hadoop.1 The advantage of using
Hadoop is that it can be deployed on local commodity hardware
but is also available via cloud resource providers (an example of
the “platform as a service” cloud-computing archetype). Con-
sequently, one can seamlessly transition one’s application

1 See http://hadoop.apache.org/.
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between small- and large-scale parallelization and from running
locally to running in the computational cloud.

This article discusses image co-addition in the cloud using
Hadoop from the perspective of the Sloan Digital Sky Survey
(SDSS) with foreseeable applications to next-generation sky
surveys such as the Large Synoptic Survey Telescope (LSST).

We recognize that some of the terms used in this article are
employed by the image-processing and astronomical commu-
nities in occasionally ambiguous ways. To clarify our exposition
we have chosen the following definitions, not because they are
necessarily the only acceptable definitions, but rather so that a
requisite consistency can be imposed on our description. The
term co-addition refers to the overarching process of combining
a set of images into a final image. No assumptions are made
about the input set. For example, they may have undergone
no initial processing such as background subtraction or flat-field
correction, they may only partially overlap, they may reside in
different coordinate systems or in different projections of a
given coordinate system, or they may have varying point-spread
functions. The term stack refers to a set of images that have been
fully registered in the ways just listed but that have not been
flattened yet. The images residing within a stack have under-
gone all initial processing (background subtraction, etc.), have
been projected (and resampled) to a common coordinate system,
and have been matched to a common point-spread function. The
term mosaic refers to the final product of the co-addition pro-
cess; i.e., a mosaic is a single flattened image of the stack.

In § 2, we present background and existing applications re-
lated to the work presented in this article. In § 3, we describe
cloud computing, MapReduce, and Hadoop. In § 4, we describe
how we adapted image co-addition to the MapReduce frame-
work and present experimental results of various optimization
techniques. Finally, in §§ 5 and 6, we discuss final conclusions
of this article and describe the directions in which we intend to
advance this work in the future.

2. BACKGROUND AND RELATED WORK

2.1. Image Co-Addition

Image co-addition is a well-established process in which a
set of images go through a multistage image-processing pipeline
to produce a single image of higher quality than the individual
images in the input set. The stages of this pipeline are described
subsequently. Due to its established methodology and important
utility to researchers, many variants of co-addition have been
implemented in the past. Examples include SWarp2 (Bertin
2002), the SDSS co-adds of Stripe 82 (SDSS DR73), and
Montage (Jacob 2009; Montage 4), a scalable image analysis
framework that can be run on parallel systems. SWarp does

support parallel co-addition; it is primarily intended for use
on desktop computing environments, and its parallelism is
therefore in the form of multithreaded processing. Parallel pro-
cessing on a far more massive scale is required for existing and
future data sets. Fermilab produced a co-added data set from the
SDSS database (the same database we processed in this re-
search), but that project is now complete and does not neces-
sarily represent a general-purpose tool that can be extended
and reused.

Montage is most closely related to our work but there are
notable differences. Montage is a software toolkit and grid por-
tal for constructing co-added and mosaiced images from large
data sets. When run in its parallel form on a grid, e.g., on Tera-
Grid,5 the concurrent processing and internode communication
is organized using a message-passing interface, the standard
library for message-passing parallelization on distributed-
memory platforms. MapReduce is a higher-level approach that
offers potential savings in development time, provided one’s ap-
plication can be projected well onto the MapReduce paradigm.
Hadoop, in particular (in congruence with Google’s original
MapReduce implementation), was also designed to achieve
high scalability on inexpensive commodity hardware, rather
than requiring parallel machines with high-performance net-
work and storage.

Image co-addition is a method of image processing in which
multiple overlapping images are combined into a single image
called a mosaic (see Figs. 1 and 2). The process is shown in
Table 1. First, a set of relevant images is selected from a larger
database. To be selected, an image must be in a specified band-
pass filter (line 6) and must overlap a predefined bounding box
on the sky (line 9). The image is first background-subtracted (or
background-rectified) to remove spurious background radiation
and is then registeredwith the output coordinate system through
a process of image-warping. Warping assigns a value to each
pixel in the output by mapping that pixel’s location to a corre-
sponding location in the input image and then interpolating the
input image at that location (line 10). Finally, the image is then
adjusted to a common PSF (line 10). The set of all input images
processed in this manner comprises a stack, i.e, a set of regis-
tered images. The stack is then summed on a per-pixel basis to
produce a single consistent mosaic: i.e., a flattened image of the
stack (line 18).

2.2. Experimental Data Set

Much of modern astronomy is conducted in the form of large
sky surveys in which a specific telescope and camera pair are
used to produce a consistent6 database of images. One recent
and ongoing example is the Sloan Digital Sky Survey (SDSS),
which has thus far produced 70 Tbytes of data (SDSS DR7).

2 See http://www.astromatic.net/software/swarp.
3 See http://www.sdss.org/dr7/start/aboutdr7.html.
4 See http://montage.ipac.caltech.edu/docs/.

5 See https://www.teragrid.org/.
6 A set of images with similar spatial, color, and noise statistics.
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The next-generation survey is the LSST, which will produce
60 Pbytes of data over its 10 yr lifetime, starting this decade.
These data sets are large enough that they cannot be processed
on desktop computers. Rather, large clusters of computers are
required.

In this article we consider the SDSS database. The SDSS
camera has 30 CCDs of 2048 × 1489 resolution arranged in
a 5 × 6 grid representing five bandpass filters and six strips
of sky (Gunn 1998). Images are captured by drift-scan such that
the camera remains fixed during an integration session and the
sky moves across the field of view. The CCD readout rate is
slowed down dramatically (as compared with a typical rapid-
capture CCD) so as to shift pixel charge from one row of
the CCD to the next in precisely sidereal time. In this way,
images are captured without trails, yet without moving the tele-
scope. The resulting integration time per point on the sky is con-
sequently determined by the arc subtended by a CCD’s length
along the right ascension axis relative to the sky (54.1 s).

2.3. Cluster Configuration and Experiment Data Set

We ran our experiments on a Hadoop-configured cluster.
This cluster is funded by the National Science Foundation Clus-
ter Exploratory grant (CluE) and is maintained by Google and
IBM. At the time of this research, the cluster consisted of
approximately 400 quad-core nodes (more nodes were added
later), with each node divided evenly between mapper and re-

ducer slots (described in § 3). Thus, there were approximately
800 mapper and reducer slots each. It should be noted that other
people working on unrelated projects also have access to this
cluster for research purposes and, due to the unpredictability
of their usage at any given time, the cluster’s load could vary
dramatically. This situation introduced wide variances into our
timing experiments.

For our experiments we used the Stripe 82 data set from
the SDSS-I (2000–2005) and SDSS-II (2005–2008) surveys.
The images are minimally altered7 from the original camera-
captured images and therefore reflect the original CCD resolu-
tion (described previously) and world coordinate system (WCS).
The images undergo a coordinate-system transformation based
on the WCS in each FITS file’s header as a component of the
co-addition process. Stripe 82 spans right ascension between
�50° and þ60° (Stripe 82 only operated in the fall) and has a
coverage of about 75 visits (see Fig. 3). Stripe 82 contains about
1,000,000 images in about 20 Tbytes. From this database we
defined a 3° long window in right ascension in the most deeply
covered region (37° to 40°; see Fig. 3) and produced the corre-
sponding subset for our experiments, approximately 100,000
images comprising 250 Gbytes of gzip-compressed data (about
600Gbytes uncompressed). Using a subset permits us to perform

FIG. 1.—11 Flowchart of the overall image co-addition process. The number of input images is effectively unlimited. Note that multiple independent simultaneous
queries are also supported.

7 Bias subtraction, flat-field correction, and cosmic-ray/defected-pixel
interpolation (see the SDSS glossary at http://www.sdss.org/dr7/glossary/).

ASTRONOMY IN THE CLOUD: USING MAPREDUCE 3

2011 PASP, 123:000–000



our experiments much more rapidly. Note that the subset main-
tains the full depth of the original data set by being confined to all
images within a given spatial bound. A more naive method of
generating a subset, perhaps by randomly selecting a fraction
of the original data set, would have yielded shallower co-adds,
and any experimentswould therefore have offeredweaker insight
into how the system’s performance might scale up to the full
data set.

We ran the Hadoop co-add system described in this article on
two different queries: one representing a lower bound on the
query sky bounds we expect to be requested when conducting
actual research (approximately 1=4° square) and the other repre-
senting the corresponding upper bound (approximately 1°
square). Thus, the two resulting running times demonstrate
the expected best and worst performances under real-world
conditions.

In addition to the two queries that represent our primary ex-
periments, we also briefly considered other queries of identical
size but at different locations within the subset’s sky bounds in
order to determine the degree to which performance might de-
pend on the specific query. Most notably, the larger query might
cover either three or four SDSS strips (camera columns), de-
pending on its precise position along the declination axis. Such
a difference could conceivably have an effect on the perfor-
mance of the system, since it affects the degree to which our
prefiltering mechanism (see § 4.1.1.) can eliminate SDSS strips
(a filter pass of 4/6 strips in one case and 3/6 strips in the other),
thereby imposing a subsequent variation in the number of false
positives that must be considered by MapReduce. Furthermore,
due to the general variability of the database, two queries of
identical size but located in different locations will almost cer-
tainly have some variation in their overall coverage: i.e., in the
number of FITS images that ultimately contribute to the mosaic.
The results of these experiments have suggested that variation in
performance resulting from the factors described here is mini-
mal. The final running time of the overall Hadoop job is vir-
tually unaffected by the choice of query location. Without
loss of generality, we will therefore dispense with any consid-
eration of such variation for the remainder of the article.

3. MAPREDUCE

MapReduce is a programming model and an associated im-
plementation for parallel data processing (Dean 2004). Hadoop
(Apache 2007) is the open-source implementation of Map-
Reduce. MapReduce has a few primary motivations underlying
its design. First, the overarching goal is to achieve data locality,
i.e., to move the computation to the data, rather than to move the
data to the computation. Specifically, Hadoop attempts to dis-
patch each task in the distributed computation to the node that
holds the data to process. Another goal of the MapReduce de-
sign is to present a simplified framework for describing a data-
processing pipeline such that most general applications can be
described within that framework. Finally, MapReduce is de-
signed to scale to clusters with thousands of machines. At this
scale, failures are the norm, rather than the exception. It thus
includes machinery to hide compute-node failures from the user
program by managing multiple replicas of all data blocks,
automatically restarting tasks that fail, and optionally starting
multiple redundant tasks to reduce restart overhead when fail-
ures occur.

MapReduce consists of two sequential stages in which units
of computation called mappers and reducers process the initial
and intermediate representations of the input data, respectively.
While these two stages occur sequentially (mappers first), data
processing can be highly parallel within each of these two
stages. In the map stage, a large input data set is broken into
smaller pieces and distributed to numerous independent mapper
objects. Each map processes its input data, in effect performing
a transformation of that data to an intermediate representation.

FIG. 2.—Effect of image co-addition. Both images show the same region of
sky (SDSS Stripe 82, R bandpass), but the image on the bottom is composed
from 79 independent exposures. The S/N is improved by approximately a factor
of 9, the observable result of which is a dramatic decrease in the noise (grain),
thus revealing numerous sources that are undetectable in the single exposure
shown on the top.
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TABLE 1

ALGORITHM 1: CO-ADD

Input: {ims: one set of images, qr: one query}10
Output: {mosaic: a single co-added image, depth: mosaic’s per-pixel coverage map}

1: twarps ← empty // set of warped intersections
2: qf ← filter // bandpass filter
3: qb ← qr bounds
4: For each image im ∈ ims, do
5: imf ← im filter
6: If imf=qf, then
7: imb ← im bounds
8: twc ← intersection of qb and imb // Get intersection in R.A./decl.
9: If twc is not empty, then
10: twarp ← warping of im to twc // Astrometry/interpolation/PSF-matching
11: Add twarp to twarps
12: End if
12: End if
14: End for
15: mosaic ← initialized image from qr
16: depth ← initialized depth map // same dimensions as mosaic
17: for each image twarp ∈ twarps, do
18: Accumulate twarp illumination into mosaic
19: Accumulate twarp coverage into depth
20: End for

FIG. 3.—SDSS Stripe 82 coverage as a function of R.A. Within its declination range of �1:25°, average coverage is about 75 between R.A. �50° and þ60°.
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Following the map stage, the full set of intermediate map out-
puts is further distributed to the reduce stage. This distribution
process is basically a massive distributed sort of the mapper out-
puts, followed by assignment of the outputs to the reducers for
subsequent processing. Following the mapper and intermediate
shuffle stages, the reducers perform a second transformation,
the output of which is the output of the entire MapReduce pro-
cess. MapReduce may be followed by a final merge stage that
groups the numerous reducer outputs into a single result, but
this last step is generally a simple concatenation and is therefore
not considered an integral step in the overall MapReduce pro-
cess. While MapReduce can be performed in more complex
ways such as running multiple sequential map stages before
the final reduce stage (each map stage’s outputs feeding the in-
puts of the next map stage), in this article we concentrate on the
simpler case of a single map stage followed by a single re-
duce stage.

The implementation of MapReduce used in this article is
Hadoop. Hadoop is implemented in Java and, in addition to
the general MapReduce framework, incorporates the necessary
additional components to build a full MapReduce system: i.e., a
distributed file system (HDFS), a job scheduler, etc.

4. IMPLEMENTING IMAGE CO-ADDITION
IN MAPREDUCE

To adapt a general algorithm to MapReduce we must define
two functions: the mapper and the reducer. We have adapted
image co-addition to MapReduce in the most direct manner pos-
sible (see Tables 2 and 3). This straightforward implementation
suffices to demonstrate the key benefits for the MapReduce
framework as a building block for astronomy image-processing
pipelines. Figure 4 illustrates the overall process. Each call to
the map function processes a single input image. The image is
checked against the query parameters for inclusion in the
mosaic. If it passes this test (overlap of the query bounds
and designation as the correct bandpass filter), it is then warped
to the query’s coordinate system and the resulting bitmap is
passed to the reducer. After all images have been excluded

or warped, the reducer then accumulates all of the bitmaps into a
mosaic.8

Table 3 shows that we use a single reducer to perform the
summation of the warped intersection bitmaps for a given query;
i.e., while mappers are parallel over input images, reducers are
parallel over queries. The overall process can readily be ex-
tended to process multiple queries at once.9 In such cases,
the mapper considers the input image against each query and
produces a warped bitmap for each query. The bitmaps are then
sent to distinct reducers, each of which performs the summation
for a particular query. Note that the warping of the input images
to the query’s coordinate system dominates the computational
cost; i.e., the per-pixel summation of the stack that is performed
in the reducer is a comparatively simple operation. Furthermore,
in our future work we intend to significantly increase the com-
plexity of the mapper operation through the incorporation of
more sophisticated warping and PSF-matching algorithms,
whereas the reducer’s task of pixel summation will remain re-
latively unaffected. Therefore, the reducer’s serial nature does
not hinder the overall running time. Finally, it should be noted
that while the reducer acts in serial on a per-query basis, it can
act in parallel across queries if a single job processes multiple
queries against the overall data set (see Fig. 4). While the output
of the reducer is formally a key/value pair our system does not
emit the mosaic (the image itself) through this mechanism.
Rather, the mosaic is written directly to disk (as a FITS file)
as a side effect of the MapReduce process.

The naive method described in this section summarizes the
most straightforward adaptation of image co-addition to Map-
Reduce. However, it suffers from two inefficiencies. First, the
naive method processes every image once every execution. Sec-
ond, finding the location of millions of small individual files
during processing dominates the runtime. In the next section,

TABLE 2

ALGORITHM 2: MAP

Input: {init: qr: one query, key: unused, value: im: one image}
Output: {key: qr, value: twarp: a single image warped to qr bounds}

1: imf ← im filter
2: imb ← im bounds
3: qf ← qr filter
4: qb ← qr bounds
5: If imf=qf, then
6: twc ← intersection of qb and imb // Get intersection in R.A./decl.
7: If twc is not empty, then
8: twarp ← warping of im to twc // Astrometry/interpolation
9: End if
10: End if

TABLE 3

ALGORITHM 3: REDUCE

Input: {key: qr, value: twarps: a set of images warped
to qr bounds}

Output: {key: unused, value: unused}
1: mosaic: a single co-added image
2: depth: a coverage map corresponding to mosaic
3: mosaic ← initialized image from qr
4: depth ← initialized depth map // Same dimensions as mosaic
5: For each twarp ∈ twarps, do
6: Accumulate twarp illumination into mosaic
7: Accumulate twarp coverage into depth
8: End for
9: Write mosaic and depth to FITS files // Side effect of

MapReduce process

8 Note that in our current work, we are not performing PSF-matching, only
warping and interpolation.

9 In fact, we have implemented the processing of multiple queries, but not
thoroughly profiled such behavior.
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we address these problems and describe optimizations to
solve them.

4.1. Optimizations

4.1.1. Prefiltering

Of the 100,000 FITS files in our experimental data set, only a
small number will ultimately contribute to any one query’s mo-
saic. If we can exclude some of the irrelevant files from con-
sideration before running MapReduce we may improve the
overall job’s performance. Therefore, one of the most straight-
forward ways to improve efficiency is to filter the input and not
process the entire data set. Filtering can be accomplished by
considering the data set’s directory structure and file name con-
vention and subsequently building a partially exclusive glob
pattern (similar to a regular expression) when specifying the in-
put file set for MapReduce.

Our prefilter works in two ways. The SDSS camera’s 30-
CCD array is divided into five rows corresponding to five filters
and six columns corresponding to six parallel nonoverlapping
strips of the sky. In the Stripe 82 data set, these six strips cor-
respond to parallel strips in declination. Any individual FITS
file in the data set corresponds to an image captured by one
of these 30 CCDs. Since a query explicitly indicates a specified
bandpass, we can immediately reduce our input data set by a
factor of 5 by eliminating from consideration those FITS files

captured in one of the four other bandpass filters. Furthermore,
the data set is structured in such a way that is relatively straight-
forward to filter by CCD column; i.e., by spatial location along
the declination axis (see Fig. 5). We perform this secondary fil-
ter by determining which of the six columns the query’s sky
bounds overlap. For a very small query we might therefore
achieve a further sixfold reduction in the input data set, although
for larger queries this reduction is usually on the order of 1.5 at
best (elimination of two of the six total columns).

The following diagram shows how the SDSS Stripe 82
database is organized. As an example, let us assume that we
wish to construct a filter that accepts strips 2, 3, and 4, and band-
pass g. One possible glob10 would be /SDSSDB_ROOT/*/*/
corr/[234]/fpC-*-[g][234]-*.fit. The diagram
below, of the directory hierarchy of the SDSS database, illus-
trates how this glob pattern can be used to exclude the unneces-
sary files when building the input set for MapReduce.

SDSSDB_ROOT
5902 ← SDSS Stripe 82 run id
40 ← rerun id

FIG. 4.—Image co-addition adapted to MapReduce. Each input image from the database is processed by a single mapper. Given multiple mappers operating on
multiple nodes of the cluster, this stage can be highly parallel. Each mapper sends a warped bitmap (the intersection of an input image and the query bounds) to a reducer.
The reducer operates in serial for a given query, accumulating all of the bitmaps into a mosaic. Note, however, that processing multiple queries is quite feasible. In such a
scenario, the mappers process their input image against multiple queries and send each corresponding bitmap to a different reducer. In this way, the reducers operate in
parallel over the multiple queries of a given run.

10 There are multiple possible ways of constructing a glob that satisfies the
filter requirement. For example, the second [234] in the example shown is re-
dundant and could be replaced with a *.

7
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corr ← constant directory name (cor-
related images)

1 ← strip (camera column 1–6)
fpC-005902-u1-0690.fit ← FITS

file
fpC-005902-g1-0690.fit
fpC-005902-u1-0691.fit

fpC-005902-g1-0691.fit
2

fpC-005902-u2-0690.fit
fpC-005902-g2-0690.fit
fpC-005902-u2-0691.fit
fpC-005902-g2-0691.fit

3
4
5
6

We ran our experiments on two query sizes. Table 4 (row 2)
and Figure 6 (first bar in each set) show the results of our first
round of experiments with the larger query’s results in the left
column of the table and left plot group. Note that the spatial
filter occurs on only one spatial axis, not two as would be re-
quired for a perfect filter. Given a column that passes the pre-
filter, all FITS files in the data set that were captured in that
column will be considered by the mappers. This is unfortunate,
since many of those FITS files will still not overlap the query
bounds in right ascension. They will be detected via their empty
intersections and be discarded by the mappers, but these false
positives represent wasted effort. We discuss this inefficiency
and methods for handling it in § 4.1.4., but first we investigate
where the prefiltered method focused its time.

Figure 7 shows a breakdown of the prefiltered job’s overall
running time for the larger query into the salient stages. The last
bar represents the total running time, 42 minutes, the same mea-
surement indicated in the first bar of Figure 6. A call to main()
involves a preliminary setup stage in the driver followed by a
single call runJob(), which encapsulates the MapReduce
process. Thus, the bar in the fourth region is the sum of the bars
in the first and third regions. Likewise, the call to runJob()
runs the MapReduce process and has been further broken down
into the components shown in the second region. Thus, the bar
in the third region is the sum of the bars in the second region.
We observe that Construct File Splits is the dominating step of
the overall process. This indicates that the Hadoop co-add pro-
cess spent most of its time locating the FITS files on HDFS and
preparing them as input to the mappers. The cost associated
with this step results from a set of serial remote procedure calls
(RPCs) between the client and the cluster. The actual image-
processing computations are represented only in the two short-
est bars labeledMapper Done and Reducer Done indicating that
Hadoop spent a small proportion of its total time on the the fun-
damental task. This observation suggests that there is substantial

inefficiency in the associated method: namely, in the RPCs in-
volved. The next section describes one method for alleviating
this problem.

We never explicitly measured the performance without pre-
filtering, but an estimate is easy to calculate. Given that the run-
ning times with prefiltering for our two experimental query sizes
were 26 and 42 minutes, respectively, and that the running time
was dominated by the serial RPC bottleneck, and that the pre-
filter reduced the number of input files by a factor of 7.5 (about
13,000 files out of the 100,000 total passed the prefilter), we can
estimate that without prefiltering, the process would have taken
approximately 194 and 315 minutes, respectively (Table 4,
row 1). This estimate assumes a linear relationship between

FIG. 5.—In addition to prefiltering images by bandpass filter, we also prefilter
images on one spatial axis. Given that the SDSS camera produces images in six
parallel strips of sky, we can exclude those strips that do not overlap the query
bounds. This figure shows the spatial layout of a set of FITS files as produced by
the camera, arranged into six long strips. Since the query bounds (inset rectan-
gle) only overlap columns 2, 3, and 4, we can exclude columns 1, 5, and 6 (in-
dicated with X). However, the filter suffers from false positives (indicated with
FP). Those images will be detected and discarded in the mappers.
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the number of files to be found on HDFS and the required time,
which is justified given that the number of RPCs is constant per
file and the amount of time required per RPC is constant.

4.1.2. Optimizing Hadoop with Sequence Files

While Hadoop is designed to process very large data sets, it
performs better on a data set of a given size if the total number of
files is relatively small. In other words, given two data sets of
identical data with one data set stored in a large number of small

files and the other stored in a small number of large files,
Hadoop will generally perform better on the latter data set.
While there are multiple contributing factors to this variation
in behavior, one significant factor is the number of RPCs re-
quired in order to initialize the MapReduce job, as illustrated
in the previous section. For each file stored on HDFS, the client
machine must perform multiple RPCs to the HDFS name node
to locate the file and notify the MapReduce initialization rou-
tines of its location. This stage of the job is performed in serial
and suffers primarily from network latency. For example, in our
experimental database we processed 100,000 files. Each file had
to be independently located on HDFS prior to running the Map-
Reduce job and this location was performed serially over set of
100,000 files. Consequently, this step alone could take nearly
5 hr on our setup. Even in the prefiltered method described pre-
viously, this step still took about 30 minutes (see Fig. 7).

The preceding is a well-known limitation of the Hadoop sys-
tem (White 2009) and Hadoop includes an application pro-
gramming interface (API) and a set of data structures
specifically targeted at alleviating it. The relevant structure is
a sequence file. A sequence file contains an arbitrary number
of key/value pairs, where a key is used to indicate (and locate)
a specific file and the value is the file in question. In this way,
individual files can be retrieved from a sequence file in a

TABLE 4

CO-ADD RUNNING TIMES (MINUTES) FOR TWO QUERY SIZES

Method 1° 1=4°

(1) . . . . . Raw FITS input, not prefiltereda 315.0 194.0
(2) . . . . . Raw FITS input, prefiltered 42.0 25.9
(3) . . . . . Unstructured sequence-file input 9.2 4.2
(4) . . . . . Structured sequence-file input, prefiltered 4.0 2.7
(5) . . . . . SQL → unstructured sequence file input 7.8 3.5
(6) . . . . . SQL → structured sequence file input 4.1 2.2

aThis method was not explicitly tested. The times shown were estimated
by assuming linearity (see § 4.1.1. for justification) and scaling the second
method’s running time by the prefilter’s reduction factor (7.5): e.g., 42:0 ×
7:5 and 25:9 × 7:5.

FIG. 6.—Co-add running times (shorter bars are better). Two queries (large on left, small on right) were run via three methods (from left to right: prefiltered FITS input,
nonprefiltered unstructured sequence-file input, and prefiltered structured sequence-file input). We observe that the second and third methods yielded 5 times and 10
times speedups relative to the first method for the large query. Note that the number of mapper input records (FITS files) for the three methods for the large query was
13415, 100058, and 13,335, respectively.
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random-access fashion. In effect, a sequence file is a concatena-
tion of smaller files bundled with an index.

We use sequence files by grouping many individual FITS
files into a single sequence file, indexed simply by the FITS
filename itself. Thus, we can retrieve a specific FITS file rapidly
while simultaneously reducing the number of actual files on
disk from the number of FITS files to the number of resulting
sequence files. As a first strategy, we randomly grouped FITS
files into sequence files (thus producing unstructured sequence
files), as illustrated in Figure 8 (top). Table 4 and Figure 6 show
the results of using this approach in row 3 of the table and bar 2
of each plot group. As the results show, this approach improved
upon the prefiltered method (described previously) by a factor
of 5 and theoretically improved upon the most naive approach
by a factor of approximately 38. It should be noted that we never
implemented the most naive method and so have no running
times for it. Consequently, the prefiltered method as applied di-
rectly to the FITS database should be taken as the baseline for
performance comparisons.

Note that unstructured sequence files outperform prefiltering
of the direct FITS file data set by a factor of 5. Table 4 and

Figure 6 illustrate this fact. What is interesting is that this five-
fold improvement occurs despite the fact that in the prefiltered
case we actually reduced the input of 100,000 FITS files down
to about 13,000 files, while in the sequence-file case we could
not perform any prefiltering. In the unstructured sequence-file
case, many more FITS files were processed relative to the pre-
filtered FITS file case. Despite this inefficiency on part of the
sequence-file method, it still significantly outperforms the pre-
filtering method, due to its vast reduction in the number of ac-
tual files on disk: i.e., the conversion of the input representation
from a set of FITS files to a set of sequence files.

4.1.3. Unstructured and Structured Sequence Files

FITS files can be assigned to sequence files in any way the
programmer chooses. In the previous section, we considered the
worst-case performance by using an unstructured sequence-file
database. The resulting sequence-file database could not be
pruned in any meaningful fashion at runtime, e.g., the prefilter-
ing mechanism described in § 4.1.1., and therefore had to be
fully read and processed during a MapReduce job. Results of

FIG. 7.—Breakdown of the overall running time for the FITS input and large query (see Fig. 6) into the salient stages. The last bar represents the total time, 42 minutes.
A call to main() involves a preliminary setup stage in the driver followed by a single call runJob() that encapsulates the MapReduce process. Thus, the bar in the
fourth region is the sum of the bars in the first and third regions. Likewise, the call to runJob() runs theMapReduce process and has been further broken down into the
components shown in the second region. Thus, the bar in the third region is the sum of the bars in the second region. We observe that the dominating step of the overall
process is Construct File Splits. This indicates that the Hadoop co-addition process spent most of its time locating the FITS files on HDFS and preparing them as input to
the mappers. The actual image-processing computations are represented only in the two shortest bars labeled Mapper Done and Reducer Done indicating that Hadoop
spent a small proportion of its total time on the the fundamental task. This observation suggests that there is substantial inefficiency in the associated method.
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using such a sequence-file database were presented in the pre-
vious section.

However, it is also worth considering a more rationally mo-
tivated sequence-file structure, since doing so might permit
pruning: i.e., filtering as demonstrated previously. We once
again consider the SDSS camera’s CCD layout. This time,
we use the SDSS camera’s CCD arrangement not to define a
prefiltering method on FITS files, but rather to impose a corre-
sponding structure on the sequence-file database. We define 30
distinct sequence-file types, one corresponding to each CCD of
the camera (see Fig. 8). Thus, a given sequence file contains
only FITS files originating from one of the original 30 CCDs.
If the sequence files are named in a way that reflects the glob
filter described previously, we can then filter entire sequence
files in the same way that we previously prefiltered FITS files.
This method of filtering permits us to eliminate entire sequence
files from consideration prior to MapReduce on the basis of
bandpass or column coverage of the query. We anticipated a
corresponding improvement in performance resulting from
the reduction of wasted effort spent considering irrelevant FITS
files in the mappers.

Table 4 (row 4) and Figure 6 (third bar in each set) show the
results of using structured sequence files and prefiltering in con-
cert. We observe a further reduction in running time over un-
structured sequence files by a factor of 2 on the larger query.
The savings in computation relative to unstructured sequence
files resulted from the elimination of much wasted effort in
the mapper stage spent considering and discarding those FITS
files whose bandpass did not match the query or whose sky
bounds did not overlap the query bounds.

Both prefiltering methods suffer from false positives, result-
ing from the fact that the spatial filter occurs on only one spatial
axis. Likewise, the nonprefiltered method performs no prefilter-
ing at all. Therefore, in all three methods, effort is still being
wasted considering irrelevant FITS files. The prefiltering meth-
ods processed 13,000 FITS files in the mappers, while the non-
prefiltered method processed the entire data set of 100,000 FITS
files. However, the number of FITS files that actually contrib-
uted to the mosaic was only 3885. In the next section we de-
scribe how we used a Structured Query Language (SQL)
database and query prior to running MapReduce to eliminate
this problem.

FIG. 8.—A sequence file (each column) comprises a set of FITS files (layers). We convert a database of numerous FITS fits to a database of fewer actual files (sequence
files) using one of two methods. The first method has no structure (top)12 . FITS files are assigned to sequence files at random. The second method maps the SDSS camera’s
CCD layout onto the sequence-file database; i.e., there is one sequence file for each CCD on the camera. FITS files are assigned accordingly, and thus a given sequence
file contains FITS files of only one bandpass and from only one column of the camera.
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4.1.4. Using a Relational Database to Prefilter the FITS
Files

All three methods described previously (prefiltered FITS
files, unstructured sequence files, and prefiltered structured se-
quence files) process irrelevant FITS files in the mappers. To-
ward the goal of alleviating this inefficiency, we devised a new
method of prefiltering. This method consists of building a rela-
tional database of the FITS files outside of HDFS and outside of
Hadoop in general. The actual image data are not stored in the
relational database—only the bandpass filter and sky bounds of
each FITS file are stored, along with the necessary HDFS file
reference data necessary to locate the FITS file within the
sequence-file database: i.e., its assigned sequence file and its
offset within the sequence file. Running a job using this method
consists of first performing a SQL query to retrieve the subset of
FITS files that are relevant to the user’s query and, from the SQL
result, constructing a set of HDFS file splits11 to specify the as-
sociated FITS files within the sequence-file database (see
Fig. 9). The full set of file splits then comprises the input to
MapReduce.

The consequence of using SQL to determine the relevant
FITS files and sending only those FITS files to MapReduce
is that this method does not suffer from false positives as de-

scribed previously. Thus, the mappers waste no time consider-
ing (and discarding) irrelevant FITS files, since every FITS file
received by a mapper is guaranteed to contribute to the mosaic.
The intention is clearly to reduce the mapper running time as a
result. Table 5 shows the number of FITS files read as input to
MapReduce for each of the six experimental methods. Note that
prefiltering is imperfect; i.e., it suffers from false positives and
accepts FITS files, which are ultimately irrelevant to the co-
addition task. However, the SQL methods only process the re-
levant files.

Figure 10 shows the results of the new method. We have re-
moved the prefiltered FITS method from the plot (shown in
Fig. 6) so that we may concentrate our attention on the faster
methods: namely, the two sequence-file methods previously de-
scribed (the first two bars shown in Fig. 10) and two new meth-
ods, one each for performing SQL against the unstructured
sequence-file database (bar 3) and for performing SQL against
the structured sequence-file database (bar 4).

Several patterns are observed in the plot. First, note that it is
only meaningful to compare SQL vs. non-SQL for a given
sequence-file database, either structured or unstructured. Thus,
the appropriate comparisons to make are between bars 1 and 3
or between bars 2 and 4. We observe that in such comparisons,
the SQL method does successfully outperform the non-SQL
method in most cases, but to a lower degree than we hoped
for when we implemented it; i.e., bar 3 shows only a small im-
provement over bar 1, and bar 4 shows virtually no improve-
ment over bar 2.

FIG. 9.—SQL is used as method of prefiltering prior to running MapReduce. 13Clearly, either of the two sequence-file databases described can be used (see Fig. 8).
Please see the text for a comparison of how the performance is affected by this option.

11Although the concept of a file split is complicated when one considers the
full ramifications of storing files on a distributed file system, it suffices for our
discussion to define a file split simply as the necessary metadata to locate and
retrieve a FITS file from within a host sequence file.
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Let us consider the results indicated by bars 2 and 4 for the
larger query. The noteworthy observation is that while SQL
shows some benefit, that benefit is lower than originally antici-
pated, given the 3.5 times difference in mapper input records
(FITS files), 13,335 vs. 3885. 13,335 is the number of FITS
files read in by the prefiltered sequence-file method (of which
3885 were relevant and the rest discarded), and 3885 is the num-

ber of FITS files read in by the SQL method (all of which were
relevant). Therefore, we can conclude that in this case the cost of
considering and discarding numerous irrelevant FITS files was
negligible and likewise that the additional complexity imposed
by supporting and using an external SQL database offers no
benefit.

Let us consider the results indicated by bars 1 and 3 for the
larger query. Again, we note little improvement in performance
given the variance of the confidence intervals. This is surprising
given the dramatic difference in mapper input records: a full 26-
fold difference. The first bar represents nonprefiltered unstruc-
tured sequence files (thus, 100,058 input records), and the third
bar represents a SQL method (thus, 3885 input records). The
conclusion is similar in this case that the cost of discarding
irrelevant files is low.

We might then ask: why is there a twofold difference in per-
formance between the two SQL methods, considering that they
both processed exactly the same amount of data? To answer this
question we must investigate not merely the number of mapper
input records, but the number of mapper objects launched by
Hadoop. These two values are rarely equal, because a mapper
can be reused to process multiple input records. In the SQL

TABLE 5

NUMBER OF FITS FILES PROCESSED BY MAPREDUCE

Method 1° (3885a) 1=4° (465
a)

Raw FITS input, not prefilteredb . . . . . . . . . . . . . . 100058 100058
Raw FITS input, prefiltered . . . . . . . . . . . . . . . . . . . 13415 6714
Unstructured sequence-file input . . . . . . . . . . . . . . 100058 100058
Structured sequence-file input, prefiltered . . . . . 13335 6674
SQL →unstructured sequence-file input . . . . . . 3885 465
SQL →structured sequence-file input . . . . . . . . . 3885 465

a Indicates coverage for each query (the number of FITS files from the data
set that overlap the query bounds).

bThis method was not explicitly tested, but since it performs no prefiltering,
it should be clear that the entire data set would be processed.

FIG. 10.—Co-add running times (shorter bars are better). Two queries (large on left, small on right) were run via four methods (from left to right: nonprefiltered
unstructured sequence-file input, prefiltered structured sequence-file input, SQL unstructured sequence-file input, and SQL structured sequence-file input). The first two
bars in each set correspond to the last two bars from Fig. 6, and the second two bars provide comparative running times using the SQL method on each of the two
sequence-file types. For any given sequence-file type (bars 1 and 3 or bars 2 and 4), we observe little improvement resulting from the SQL method, despite the
inefficiency suffered by the non-SQL method (consideration and discarding of irrelevant FITS files in the mappers). Furthermore, we observe that SQL performs
quite differently on the two sequence-file types (compare bars 3 and 4), despite the fact that the two methods process an identical set of FITS files and perform
an identical set of computations. Please see the text for an explanation of this variation in performance.
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unstructured-sequence-file method, the 3885 input FITS files
were processed by 1714 mapper objects (about two FITS files
each), and in the SQL structured-sequence-file method, 338
mapper objects were used (about 11 FITS files each). This dis-
crepancy is due to the way we assign FITS files to each mapper
object. For each mapper object, we assign FITS files in the same
HDFS block. Due to the replication of blocks across HDFS,
copies of each block will be stored on multiple hosts. When
possible, Hadoop will schedule mapper objects to run on one
of the hosts where that mapper’s input blocks are located so that
the files can be efficiently accessed from local disks. Clearly,
this approach generates a variable number of mapper objects,
depending on the structure of the input sequence file. In the case
of unstructured sequence files, the FITS files relevant to a given
query are scattered throughout the sequence-file database,
whereas in the case of structured sequence files, the relevant
FITS files are more tightly packed. Thus, greater data locality
is achieved in the assignment of FITS files to mappers in the
structured case and fewer mapper objects are required. To com-
plete our understanding of the difference in running times we
must further consider the maximum number of mapper objects
that the cluster can sustain simultaneously. Since a mapper rep-
resents a conceptual unit of computation, it corresponds to—or
directly relies upon—a processor core in order to operate.
Therefore, the number of simultaneously sustainable mapper
objects for a Hadoop job is limited by the number of cores avail-
able on the entire cluster.12 In our case, this value is about 800.
We can now see one fundamental problem with the unstructured
case: not all of the 1714 mappers could run simultaneously;
some could not begin processing until after others had com-
pleted their own processing. This limitation was not true in
the case of structured sequence files, where only 338 slots were
required and they could all run simultaneously. However, one
might actually predict superior performance from the unstruc-
tured case for the simple fact that it benefits from 800 times
parallelism, whereas the structured case only benefits from
338 times parallelism. We theorize that the explanation for
why such behavior was not observed lies in the nonnegligible
startup cost of launching a mapper object; i.e., there is a genuine
benefit in reusing mappers, and there must be some tipping
point in this tradeoff, where the benefit of additional parallelism
is outweighed by the cost of creating mappers for brief compu-
tational needs.

5. CONCLUSIONS

This work presented our implementation and evaluation of
image co-addition within the MapReduce data-processing
framework using Hadoop. We investigated five possible meth-

ods of implementation, with the latter methods designed to im-
prove upon the earlier methods.

Our first round of experiments processed a data set contain-
ing 100,000 individual FITS files. Despite the use of a prefilter-
ing mechanism to decrease the input size, this method yielded
poor performance due to the job initialization costs. To decrease
the initialization time we must process a data set consisting of
fewer actual files, but obviously without altering the underlying
data. This goal is achieved through the use of sequence files that
group individual files together. Sequence files are offered
through the Hadoop API for precisely this purpose.

Our next round of experiments considered sequence files that
were grouped in an unstructured manner and that therefore
could not be prefiltered. Despite this weakness relative to the
first method, the use of unstructured sequence files still yielded
a fivefold improvement in performance.

We then ran experiments on sequence files that were grouped
in ways that reflected the same prefiltering mechanism used ear-
lier. The sequence files themselves could then be prefiltered.
This method yielded another twofold improvement in perfor-
mance (10-fold over the original method).

The first three methods described all suffered from an
inefficiency whereby irrelevant FITS files were considered
and discarded in the mapper stage. Toward the goal of alleviat-
ing this inefficiency we devised our fourth and fifth methods,
which used a SQL query prior to MapReduce to identify the
relevant FITS files. Those FITS files were then retrieved from
the two previously described sequence-file databases to run
MapReduce. When applied to the unstructured sequence-file
database, this SQL method yielded minimal improvement in
performance. The lack of structure of the sequence files pre-
vented the efficient reuse of mapper objects. However, when
the SQL method was used in conjunction with the structured
sequence-file database, the mappers were reused more effi-
ciently and good performance was achieved, although it should
be noted that the SQL method still did not significantly outper-
form the non-SQL method, in which bandpass filter and one-
dimensional spatial prefiltering were used. In the case of the
smaller query there was some advantage, however.

It should be noted that while SQL showed little improvement
over prefiltering in our current experiments, we anticipate that
SQL should show significant advantage on larger data sets. In
such a case, prefiltering would be more adversely affected by
the false-positive problem; i.e., more irrelevant FITS files would
pass the prefilter to be considered and discarded by the mappers.
There ought to be a data set size above which this wasted effort
begins to show measurable degradation in performance. On the
other hand, the SQL method should show comparatively more
gradual decrease in performance as the data set grows, since it
only processes the relevant FITS files to begin with. This pre-
diction is admittedly speculative as we have not yet conducted
the necessary experiment.

12 Ignoring, for the moment, additional factors such as distribution of core
assignments between mapper and reducer objects and shared usage of the cluster
by concurrent MapReduce jobs unrelated to our application.
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The use of Hadoop shows great promise for proces-
sing massive astronomical data sets. On a 400 node cluster
we were able to process 100,000 files (300 million pixels)
in 3 minutes using two different methods: one with SQL
and one without.

6. FUTURE WORK

Our current work represents merely the early stages of our
research into the use of Hadoop for image co-addition. Areas of
future work include:

1. Conversion of the mapper and reducer code to C++ and
incorporation of our existing C++ library of image-processing
routines that are capable of performing much more sophisticated
co-addition algorthms.

2. The addition of time bounds to the query parameters so
that co-adds may be generated only within a specified window
of time. This behavior will enable the investigation of time-
variable phenomena such as variable stars and moving objects:
e.g., asteroids.

3. The addition of subsequent pipeline stages to process the
resulting co-adds, such as the detection and tracking of moving
and variable objects.

4. The development of new parallel machine-learning algo-
rithms for anomaly detection and classification.

Ultimately, we intend to develop our system into a full-
fledged data-reduction pipeline for petabyte astronomical data
sets, as will be produced by next-generation sky surveys such
as LSST.

This work is funded by the National Science Foundation
Cluster Exploratory (CluE) grant (IIS-0844580) and NASA
grant 08-AISR08-0081. The CluE cluster is funded through
the CluE grant and maintained by IBM and Google. We thank
them for their continued support. We further wish to thank both
the Large Synoptic Survey Telescope group in the Astronomy
Department and the database research group in the Computer
Science Department at the University of Washington. All mem-
bers of both groups contributed greatly through feedback, sug-
gestions, and draft revisions.
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